Nanoscale Chemical and Electrical Stabilities of Graphene-covered Silver Nanowire Networks for Transparent Conducting Electrodes

نویسندگان

  • Seong Heon Kim
  • Woon Ih Choi
  • Kwang Hee Kim
  • Dae Jin Yang
  • Sung Heo
  • Dong-Jin Yun
چکیده

The hybrid structure of Ag nanowires (AgNWs) covered with graphene (Gr) shows synergetic effects on the performance of transparent conducting electrodes (TCEs). However, these effects have been mainly observed via large-scale characterization, and precise analysis at the nanoscale level remains inadequate. Here, we present the nanoscale verification and visualization of the improved chemical and electrical stabilities of Gr-covered AgNW networks using conductive atomic force microscopy (C-AFM), Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy (XPS) combined with the gas cluster ion beam (GCIB) sputtering technique. Specifically by transferring island Gr on top of the AgNW network, we were able to create samples in which both covered and uncovered AgNWs are simultaneously accessible to various surface-characterization techniques. Furthermore, our ab initio molecular dynamics (AIMD) simulation elucidated the specific mechanistic pathway and a strong propensity for AgNW sulfidation, even in the presence of ambient oxidant gases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly Robust Silver Nanowire Network for Transparent Electrode.

Solution-processed silver nanowire networks are one of the promising candidates to replace a traditional indium tin oxide as next-generation transparent and flexible electrodes due to their ease of processing, moderate flexibility, high transparency, and low sheet resistance. To date, however, high stability of the nanowire networks remains a major challenge because the long-term usages of thes...

متن کامل

Effective passivation of Ag nanowire-based flexible transparent conducting electrode by TiO2 nanoshell

Silver nanowire-based flexible transparent electrodes have critical problem, in spite of their excellent electrical and optical properties, that the electrical conductance and transparency degrade within several days in air because of oxidation of silver. To prevent the degradation of the silver nanowire, we encapsulated Ag-NWs with thin TiO2 barrier. Bar-coated silver nanowires on flexible pol...

متن کامل

Failure of silver nanowire transparent electrodes under current flow

Silver nanowire transparent electrodes have received much attention as a replacement for indium tin oxide, particularly in organic solar cells. In this paper, we show that when silver nanowire electrodes conduct current at levels encountered in organic solar cells, the electrodes can fail in as little as 2 days. Electrode failure is caused by Joule heating which causes the nanowires to breakup ...

متن کامل

Direct-write pulsed laser processed silver nanowire networks for transparent conducting electrodes

Metal nanowire networks are promising alternatives for transparent conducting layers in flexible electronics. However, the inverse relationship between transparency and conductivity limits their viability in many critical applications. In this work, we demonstrate a direct-write refining technique in which a solution-processed nanowire network, deposited by spin coating, is exposed to monochrom...

متن کامل

Relationship between material properties and transparent heater performance for both bulk-like and percolative nanostructured networks.

Transparent heaters are important for many applications and in the future are likely to be fabricated from thin, conducting, nanostructured networks. However, the electrical properties of such networks are almost always controlled by percolative effects. The impact of percolation on heating effects has not been considered, and the material parameter combinations that lead to efficient performan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016